Coin Acceptor Connector Pin Out

Coin Acceptor connector’s pin out

Introduction to Coin Acceptor Connector

A coin acceptor is one of the oldest forms of automatic payment collecting mechanism used in vending machines. The signaling interface is typically a simple pulse. It is triggered by the npn transistor from the coin acceptor. There is no industrial standard set on this pulse interface. However, due to their wide use in the industry, certain wiring and connector connections have become more common than others. Competition copying the same interface. And eventually, a pretty common pin-out standard emerged for the coin acceptor.

Please note that not all coin acceptor has the same connector type or the same pinout. It is recommended to always refer to your coin acceptor’s product document for accurate information.

Coin Acceptor Connector details

Socket on PCB board

JST XH Series (2.5mm pitch), 4 ways

  • Top Entry type (buy part number: B4B-XH-AM)
  • Side Entry type (buy part number: S4B-XH-A-1, S4B-XH-A)

Wiring Plug Connector

  • JST XH Series (2.5mm pitch), 4 ways(part number: XHP-4)
  • JST Insert pins
    • for 30AWG to 26AWG (part number: SXH-002T-P0.6)
    • for 28AWG to 22AWG (part number: SXH-001T-P0.6)
    • for 26AWG to 22AWG (part number: SXH-001T-P0.6N)

Alternative connectors available

Tools Accessories

  • Crimper tool

Coin Acceptor Pin Documentation

The following describes the 4 pins commonly found on a pulse-based coin acceptor device.

Pins of a Coin Acceptor

  1. 12V
  2. Pulse out (pulse)
  3. Gnd
  4. Inhibit (also known as the Counter pin, CNT)

Coin acceptor devices do not use much power. Usually, the power is tapped directly from the VMC (Vending Main Controller) board.

The pulse out can vary from device to device. Generally, the pulse width can be about 25 to 100ms. An analog coin accepts emits each pulse for each coin that is inserted through the slot. For the newer electronic version of the coin acceptor, each coin denominator can generate a different number of pulses. The VMC will then be able to count the pulses and determine the amount of coins that is collected from your vending customer.

This pulse line should be pulled to Vcc (which is 12V) by the VMC board. The coin acceptor contains a npn transistor which pull this line to the ground. So this pulse-out signal is typically an active low signal.

The last pin is the Inhibit function. Sometimes this 4th pin is known as the Counter pin in many of the documentation online. It is normally not in use, as the pulse output would be enough to know how much value in the coin is collected. For this inhibit pin, it is a signal sent from the VMC to the coin acceptor to tell the coin acceptor not to accept any more coins. It is typically active low as well. Send a low signal will activate the inhibit function.

Coin Acceptor Interface Circuit & Signal

The interface to a coin accept is simple. Inside the coin acceptor’s pulse-out pin is a npn transistor. This npn transistor acts like a physical switch. When a coin is detected, this npn transistor is going to short the Pulse OUT line to the ground. When this happens, the VMC will be able to read the pulse line changing state. This pulse output is an active low pulse.

VCCS connector Pin Out

VCCS Japan vending machine connector’s pin out

Introduction to VCCS

This is Coca-Cola’s standard interface used in Japan and other Asian Pacific Rim countries. It’s like a connection that helps Coca-Cola machines accept coins, cashless payments, and bills. There’s one plug that provides power and communication signals.

VCCS is a protocol communication standard used widely in Japan’s vending machine industry. Similar to MDB, the communication standard helps establish a common protocol to inter-link numerous devices used in a vending system. It is a very common protocol used on vending machines made in Japan.

Japan is famous for her wide range of vending machines on the street. You can easily find machines within a 100m radius in Japan’s cities.

Besides VCCS, there are also many other standards used in the vending machine industry across the world.

Protocol Converter

There are so many vending protocols and they can be overwhelming for integration work. This is especially true with VCCS protocol, there is hardly any documentation available from the internet. A converter is going to make integration work simpler.

To make things similar, there are also converters on the market that help convert vending machine protocol. It is like a translator that helps machines talking in various languages to understand each other and work together in harmony.

  1. MDB to VCCS converter.
    For MDB to VCCS converter, you can contact PIC-CONTROL Pte. Ltd. in Singapore.
  2. MDB to Pulse converter.
    Click here for the product page PIC-031 MDB Pulse Converter.
  3. MDB-RS232 (MDB over Serial), is sort of a converter that converts RS232 to MDB.
    Is available from “

VCCS Connector details

Peripheral Connector

Discconectable Crimp style connectors.

JST XL Connector (5.0mm pitch), 8 ways (part number: S08P-XL-HDS)

Master (VMC) Connector

  • JST XL Connector (5.0mm pitch), 8 ways (part number: XLP-08V)
  • JST Insert pins
    • for 26AWG to 20AWG (part number: SXF-01T-P0.7)
    • for 20AWG to 16AWG (part number: SXF-41T-P0.7)

Alternative connectors available

Tools Accessories

  • Extraction tool for JST insert pins.

VCCS Communication Protocol Documentation References

VCCS consist of 7 wires

(2x data, 1x synchronization, 1x common signal, 1x 24V power, 1x common Gnd, 8V)

  • 24V power
  • Common ground
  • Data Transmit
  • Data Receive
  • 1x Synchronization line
  • 1x Common signal line
  • 8V

Serial Communication Configuration:
8 data bits, 4800 bits/sec, 0-24 volt signalling

References relating to VCCS Vending Machine Communication Protocol

G128N Wire Tester

Simple cable tester for testing up to 128 wiring points.

  • Up to 128 test pins
  • One test button.
  • One learn button.
  • Stores up to 15 sets of wiring configurations.
  • Pass/Fail LED indicators
  • Sound response
  • Test Report display on the screen.
  • Auto-testing mode.
  • Power Supply 5-15V, 100mA
G128N wire tester

G128N 线材测试仪 wire tester.

Test for wire connection, multiple point connection, missing connection, and wrong connection.

The equipment allows you to learn a good condition sample cable by pressing and holding the learn button for at least 3 seconds. It will be use as a reference to test the rest of your cable wires. The learned cable remains in the memory even after power is removed. You can connect each of the wire points to any one pin on the equipment. It is able to test for complex multiple-point connections or cross-connection.

There is also an automatic testing mode to speed up your mass production wire testing.

The test button comes with a green indicator for test Pass, and red indicator for test Fail. A simple report of the failure will be displayed on the screen to pinpoint the wiring where the failure occurred.

The display is in Chinese, but we will provide you with an English user operation manual to guide you along. Operating this tester is simple. Follow through once and you can fairly understand how to operate this equipment.

The search port (red socket on the front panel) is used for assisting you to find the particular pin number on your cable wire or on this test equipment.

For Cable Harnesses

This wire tester equipment is suitable for testing cable harneses, USB cable, computer cables, PCB board traces, etc…

G128N wire tester


Connectors adaptor board for your cable testing. We also help to custom design and fabricate an adaptor for your cable connectors.

Dimension Size

The equipment size is 295 x 215 x 115 mm.
Weight is 2.2kg


The test equipment is USD$180 (without the optional accessories). Comes with its own power adaptor.
This price do not include the shipping fee or import tax imposed by your country.

Payment can be by credit card, Paypal or bank transfer.

Click here to contact us to order this G128N Wire Tester.

Check out our best-seller cable tester tool.

CCT-01 Cable Tester Tool

Click here to check out our affordable cable tester tool.